Structure of a c-Cbl–UbcH7 Complex RING Domain Function in Ubiquitin-Protein Ligases

نویسندگان

  • Ning Zheng
  • Ping Wang
  • Philip D. Jeffrey
  • Nikola P. Pavletich
چکیده

Ubiquitin-protein ligases (E3s) regulate diverse cellular processes by mediating protein ubiquitination. The c-Cbl proto-oncogene is a RING family E3 that recognizes activated receptor tyrosine kinases, promotes their ubiquitination by a ubiquitin-conjugating enzyme (E2) and terminates signaling. The crystal structure of c-Cbl bound to a cognate E2 and a kinase peptide shows how the RING domain recruits the E2. A comparison with a HECT family E3-E2 complex indicates that a common E2 motif is recognized by the two E3 families. The structure reveals a rigid coupling between the peptide binding and the E2 binding domains and a conserved surface channel leading from the peptide to the E2 active site, suggesting that RING E3s may function as scaffolds that position the substrate and the E2 optimally for ubiquitin transfer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Features of the parkin/ariadne-like ubiquitin ligase, HHARI, that regulate its interaction with the ubiquitin-conjugating enzyme, Ubch7.

We recently reported the identification of a RING finger-containing protein, HHARI (human homologue of Drosophila ariadne), which binds to the human ubiquitin-conjugating enzyme UbcH7 in vitro. We now demonstrate that HHARI interacts and co-localizes with UbcH7 in mammalian cells, particularly in the perinuclear region. We have further defined a minimal interaction region of HHARI comprising re...

متن کامل

Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins.

The protooncogene c-Cbl has recently emerged as an E3 ubiquitin ligase for activated receptor tyrosine kinases. We report here that c-Cbl also mediates the ubiquitination of another protooncogene, the non-receptor tyrosine kinase c-Src, as well as of itself. The c-Cbl-dependent ubiquitination of Src and c-Cbl requires c-Cbl's RING finger, Src kinase activity, and c-Cbl's tyrosine phosphorylatio...

متن کامل

Casitas B-Lineage Lymphoma RING Domain Inhibitors Protect Mice against High-Fat Diet-Induced Obesity and Insulin Resistance

The casitas b-lineage lymphoma (c-Cbl) is an important adaptor protein with an intrinsic E3 ubiquitin ligase activity that interacts with E2 proteins such as UbCH7. c-Cbl plays a vital role in regulating receptor tyrosine kinase signaling. c-Cbl involves in whole-body energy homeostasis, which makes it a potential target for the treatment of type 2 diabetes and obesity. In the present study, we...

متن کامل

Cbl-c Ubiquitin Ligase Activity Is Increased via the Interaction of Its RING Finger Domain with a LIM Domain of the Paxillin Homolog, Hic 5

Cbl proteins (Cbl, Cbl-b and Cbl-c) are ubiquitin ligases that are critical regulators of tyrosine kinase signaling. In this study we identify a new Cbl-c interacting protein, Hydrogen peroxide Induced Construct 5 (Hic-5). The two proteins interact through a novel interaction mediated by the RING finger of Cbl-c and the LIM2 domain of Hic-5. Further, this interaction is mediated and dependent o...

متن کامل

Structural basis for ubiquitin-mediated dimerization and activation of the ubiquitin protein ligase Cbl-b.

Cbl proteins are E3 ubiquitin ligases that are negative regulators of many receptor tyrosine kinases. Cbl-b and c-Cbl contain a ubiquitin-associated (UBA) domain, which is present in a variety of proteins involved in ubiquitin-mediated processes. Despite high sequence identity, Cbl UBA domains display remarkably different ubiquitin-binding properties. Here, we report the crystal structure of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 102  شماره 

صفحات  -

تاریخ انتشار 2000